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Kenneth Olson has recently developed a theoretical model to predict how endogenously-

generated intracellular molecules of H2S would diffuse within and outside the cells (Olson, 

2013). Clarifying this question is of major interest since intracellular H2S, which is mostly 

present under the form of its sulfhydric anion HS
-
, has been hypothesized to be an important 

actor involved in the transduction of the response to hypoxia (Olson, 2011a). 

One of the major implications of Olson’s model, which suggests little, if any, diffusion 

outside the cytoplasm of endogenously-generated H2S, is that studies supporting a physiological 

role for this gas, based on its determination in the extracellular milieu -blood for in-vivo 

experiments or “bath” for tissular or cellular preparations- should be considered with a high 

degree of skepticism. This notion corroborates results from previous studies (Furne et al., 2008; 

Whitfield et al., 2008) wherein major methodological pitfalls preventing accurate determination 

of H2S/HS
-
 in the extracellular milieu were identified, accounting for the unrealistic high 

(microM) baseline levels of sulfide in the blood and in tissues reported in the literature. Although 

attempts are being made to measure/visualize intracellular H2S/HS
-
 (Lin et al., 2013), theoretical 

models, such as the one proposed by Olson (Olson, 2013), represent an essential step in the 

development of a rational frame of reference aimed at predicting the fate of endogenous – or 

exogenous-  H2S.  

Prediction of the changes in sulfide concentrations remains difficult:  the amount, the 

rate, the site as well as the mechanisms of regulation of the “production” of H2S are far from 

being established or understood, while the “oxidative” properties of the mitochondria for this gas 

varies from tissue to tissue and possibly from cell to cell.  H2S is also a very reactive molecule. 
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In the reducing milieu of the cytoplasm, sulfhydration of cysteine residues (Mustafa et al., 2009) 

may be limited, but the interactions of H2S with metallo-proteins are certainly quantitatively 

significant and pertinent to include into any prediction model. It is H2S reactivity with metal 

compounds, i.e. ferric iron (methemoglobin) (Haouzi et al., 2011a; Smith and Gosselin, 1966; 

Van de Louw and Haouzi, 2012) or oxidized cobalt (hydroxocobalamin) (Smith, 1969; Truong et 

al., 2007; Van de Louw and Haouzi, 2012), which has been offered as a rationale for developing 

antidotes against H2S poisoning. Similarly, Zn compounds have been used to decrease H2S in the 

colon (Suarez et al., 1998). 

Intra-cytoplasmic and intra-mitochondrial metallo-proteins are as abundant (Dupont et 

al., 2006) as they are diverse (Karlin, 1993); actually, a large proportion of the pool of proteins 

present in a cell does contain metal compounds including Fe, Zn, Cu or Co at various levels of 

oxidation (Waldron et al., 2009). These molecules constitute a large sink in the mitochondria and 

the cytoplasm for the nM or pM concentrations of H2S produced in a cell. As a result, prediction 

of the kinetics or the changes in the amplitude of intracellular soluble H2S may prove to be quite 

challenging.  

In addition to this “trapping effect”, enhanced, reduced or even novel functions of 

metallo-proteins may emerge from the presence of metallo-sulfide. The long list of intracellular 

metallo-proteins potentially involved in the systemic response to hypoxia includes molecules 

ranging from myoglobin to some of the most fundamental components of the electron chain, 

from superoxide dismutase (Searcy et al., 1995) to carbonic anhydrase, and from angiotensin-

converting enzyme (Laggner et al., 2007) to various heme proteins. It is, after all, through the 

combination of H2S/HS
-
 with the cytochrome C oxidase that the dreadful toxicity of H2S seems 

to operate (Dorman et al., 2002). 
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Incorporating all relevant factors potentially interacting with H2S in a cell is a real 

challenge, but the development of theoretical models providing realistic anticipation of the fate 

of H2S must be pursued to clarify the physiological effects of endogenous sulfide -if any- and, as 

cautioned by Olson, to separate hype from hope (Olson, 2011b).  
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